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ABSTRACT 
Deep learning has proven very effective in image and 
audio classification tasks. Is it possible to improve the 
performance of emotion recognition tasks based on deep 
learning approaches? We introduce the strength of deep 
learning in the context of soundscape emotion recogni-
tion (SER). To the best of our knowledge, this is the first 
study to use deep learning for SER. The main aims are to 
evaluate the performance of the Convolutional Neural 
Network (CNN) trained from scratch, the Long Short-
Term Memory Recurrent Neural Networks (LSTM-RNN) 
trained from scratch, the CNN trained through supervised 
fine-tuning, the Support Vector Machines for Regression 
(SVR), and the combination of CNN and SVR (Transfer 
Learning) for predicting the perceived emotion of sound-
scape recordings. The results show that deep learning is a 
promising approach for improving the performance for 
SER. Moreover, the fine-tuned VGG-like audio classifi-
cation model outperforms the other deep-learning frame-
works regarding predicting valence. The best performan-
ce of predicting arousal is obtained by the CNN trained 
from scratch. Finally, we analyze the performance of pre-
dicting perceived emotion for soundscape recordings in 
each of Schafer's soundscape categories. 

1. INTRODUCTION 
A soundscape recording is “a recording of sounds at a 
given locale at a given time, obtained with one or more 
fixed or moving microphones” [1]. The research in 
soundscape emotion recognition (SER) investigates com-
putational systems to recognize the perceived emotion of 
soundscape recordings. One application of such research 
is to build automatic sound design systems that help 
sound designers to create sound effects that evoke target 
emotions. It can also be an effective tool for engineers to 
design emotion-based recommendation systems for re-
trieval of soundscape recordings. 

In the last few years, the development of deep learning 
techniques has greatly improved the performance of au-
dio and image classification tasks. These breakthroughs 
are caused by the powerful hardware, larger datasets and 
the designs of neural network architectures [2]. Now, 
there are publicly available annotated soundscape record-
ings datasets that can be used in SER studies [3]. Alt-
hough they are far from being as large as datasets such as 

AudioSet [4], it is possible to apply the deep learning 
approaches to improve the performance of SER. 

In this work, our goal is to maximize performance and 
compare five state-of-the-art architectures for the predic-
tion of perceived valence and arousal of soundscape re-
cordings. The five frameworks are fine-tuned Convolu-
tional Neural Network (CNN), CNN trained from scratch, 
Long Short-Term Memory Recurrent Neural Networks,  
(LSTM-RNN) trained from scratch, Support Vector Ma-
chines for Regression (SVR), and transfer learning. To 
the best of our knowledge, this is the first study using 
deep learning approaches to perform SER. 

The paper is organized as follows. Section 2 provides 
background material on SER works, as well as deep neu-
ral networks and kernel methods. In Section 3, our da-
taset and data augmentation are described. The five ma-
chine learning frameworks are presented in Section 4. 
Their performance is discussed in Section 5, while the 
paper ends in Section 6 with conclusions.  

2. BACKGROUND 

2.1 Soundscape Emotion Recognition 

A great deal of the literature has discussed emotion in-
duction as it relates to music and movies, but not much 
has been written about the perceived emotion of sound-
scapes. To obtain the important emotional attributes in 
soundscapes recordings, Berglund et al. [5] conducted a 
survey where 100 listeners were asked to evaluate 30 
outdoor soundscapes recordings based on 116 perceptual-
emotional attributes. Then, the authors used principal 
component analysis on the survey data to select two criti-
cal dimensions: pleasantness and eventfulness. The au-
thor indicated that these two dimensions are corre-
sponding to the two dimensions (valence and arousal) [6] 
in the circumplex model of emotion developed by Russell. 
Valence represents the pleasantness of a stimulus. 
Arousal indicates the level of eventfulness [6]. 

Later, Brocolini et al. [7] investigated the relationship 
between perceived pleasantness of soundscapes and other 
subjective variables. The authors asked 120 people to rate 
the pleasantness of soundscapes, incorporating "global" 
perceptions such as visual and air quality pleasantness, on 
a continuous scale from 0 to 10. They found that the 
acoustic scene has a strong impact on the evaluation of 
pleasantness. 
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Thorogood and Pasquier [8] designed the Impress sys-
tem for predicting perceived pleasantness and eventful-
ness for soundscapes recordings. The authors selected 
audio excerpts from the Freesound database and used a 
segmentation algorithm [9] to search for regions with a 
consistent soundscape characteristic greater or equal to 4 
seconds. The segmentation algorithm was designed based 
on perceptual categories including background, fore-
ground, and background with foreground sound. Next, 
the authors extracted low-level audio features and applied 
the bag-of-frames approach (BOF) [10] to represent au-
dio signals. Multiple linear regression models were de-
signed for the mapping between features and ratings of 
the perceived emotion of soundscape recordings provided 
by one expert user. Based on this work, Fan et al. [11] 
curated a corpus of audio files extracted from the Sound 
Ideas sound effects library1 and the World Soundscape 
Project library2. The authors collected annotated sound-
scape recordings from an online survey where 20 partici-
pants annotated 120 soundscape excerpts. Then, they 
analyzed the level of agreement between annotators and 
built a gold standard model to predict perceived emotion 
of soundscape recordings. Their evaluation showed that 
the models provide strong prediction for both arousal (R2: 
0.816) and valence (R2: 0.567). 

Lundén et al. [12] investigated yet another method 
mapping audio features of soundscape recordings onto 
the 2-D emotional space. The authors extracted 93 ex-
cerpts from 77 soundscape recordings and invited 33 par-
ticipants to rate the soundscapes recordings on 2-D emo-
tional space. A Gaussian mixture model is used to cluster 
audio features. The authors did outlier detection and used 
the resulting dissimilarity matrix to train two support 
vector regression models. Evaluation of the model 
showed a good fit of the Mel-frequency cepstral coeffi-
cients (MFCCs) to responses of models of predicting both 
eventfulness (R2: 0.83) and pleasantness (R2: 0.74). 

Later, Fan et al. designed a crowdsourcing experiment 
to collect annotations of perceived valence and arousal of 
1,213 soundscape excerpts [3] and published the dataset: 
Emo-Soundscapes, which is described in section 3. The 
authors used a ranking-based annotation method instead 
of rating-based methods. The authors also defined proto-
cols to assess performance of SVR. The results are hu-
man competitive (arousal, R2: 0.853; valence, R2: 0.622). 

2.2 Kernel Methods, Deep Neural Networks and Af-
fective Computing 

SVR is one of the most common kernel methods in ma-
chine learning [13]. The model maps the data into a high-
dimensional feature space based on a non-linear function 
induced by the selected kernel. SVRs have been used 
extensively in the affective computing field for music 
emotion recognition [14], SER [3], and affective video 
content analysis [17].  

                                                             
1 https://www.sound-ideas.com/ 
2 https://www.sfu.ca/~truax/wsp.html 

A CNN consists of stacked convolutional layers fol-
lowed by one or more fully connected layers [16]. In af-
fective computing, CNNs have been mostly used for fa-
cial expression recognition [15]. Researchers have also 
done affective video content analysis using CNNs [17]. 
Regarding audio, Liu et al. presented a CNN framework 
to classify music emotion based on spectrograms [18]. 
Their method outperforms traditional methods. 

Long Short-Term Memory networks (LSTMs) are a 
special kind of recurrent neural network (RNN) [19]. The 
output of an RNN depends not just on the network input 
but also on a hidden state, which is updated with each 
new input. Unlike a standard RNN, an LSTM-RNN net-
work can learn long-term dependencies. It contains 
memory blocks that are composed of a memory cell, 
an input gate, an output gate and a forget gate. These 
learnable gates accumulate new information to the cell 
and control the state of the cell. 

In affective computing, Weninger et al. utilized LSTM-
RNN to predict perceived valence and arousal of songs 
using psychoacoustic features [20]. Recently, Malik et al. 
proposed stacked convolutional and recurrent neural net-
works for music emotion recognition [16]. Their model 
has fewer parameters compared with the state-of-the-art 
methods for the same task and yet achieves the best result 
reported on the MediaEval2015 Music dataset3. 

3. EMO-SOUNDSCAPES DATASET 
We use the Emo-Soundscapes dataset curated by Fan et 
al. [3]. Emo-Soundscapes is a database for soundscape 
emotion recognition composed of 1213 6-seconds long 
monophonic soundscape excerpts. Emo-Soundscapes also 
contains rankings of the perceived emotion of 1213 
soundscape recordings in the 2D valence-arousal space. 
To collect affective annotations, Fan et al. conducted a 
crowdsourcing study where 1182 trusted annotators from 
74 different countries did pairwise comparisons of all 
soundscape experts regarding perceived valence and per-
ceived arousal. Each pair has been annotated by three 
annotators. Based on the pairwise comparisons, the data-
base is sorted along the valence and arousal axis. In this 
study, we convert the rankings to ratings by mapping the 
range of ranking values, 1 to 1213, to a range of rating 
values, 1.0 to −1.0, so that the highest ranked excerpt has 
the highest rating. 

There are two sets of soundscape recordings in the 
Emo-soundscape dataset. The first set has 600 excerpts 
that are extracted from soundscape recordings download-
ed from Freesound.org4 shared under Creative Commons 
licenses5. Fan et al. retrieved these soundscape excerpts 
based on the audio quality and the keywords that are se-
lected following Schafer’s soundscape taxonomy [21]. 
Table 1 shows Schafer’s taxonomy. There are six catego-
ries. In the first set, there are 100 excerpts per category. 
The second set contains 613 excerpts that are mixed us-
ing the selected excerpts from the first set. 
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Categories Examples 
Natural sounds Bird, thunder, rain, wind 
Human sounds Laugh, whisper, shouts 
Sounds and society Party, concert, store 
Mechanical sounds Engine, factory  
Quiet and silence Quiet part, silent forest 
Sounds as indicators Clock, church bells 

Table 1. Murray Schafer’s Taxonomy [3, 21]. 

We adopt a windowing method to perform data aug-
mentation to artificially enlarge the training set. We 
chose the window size of 4096 and a step size of 2048. 
The sample rate of each excerpt is 44100 Hz. First, we 
cropped the beginning of each excerpt to make the dura-
tion of the remaining part of the original excerpt equal to 
100 step size, which is 4.644 seconds. This is because 
there are usually differences regarding the timbre be-
tween the beginning of each excerpt and the remaining 
parts. Second, we segmented the remaining part of the 
original soundscape excerpt to generate more augmented 
excerpts. For one soundscape excerpt, we kept selecting 
30 consecutive windows as one augmented excerpt and 
moving one step ahead until we reach the end of a sound-
scape excerpt. Here, the step size is 20480, which is 10 
times of the original step size. One augmented excerpt is 
1.393 seconds long. After the data augmentation, we end 
up having 8491 excerpts. The annotations of each aug-
mented excerpt are the same as the annotations of the 
original soundscape excerpt.  

We used two different sets of audio feature extraction 
methods. The first method is to use a pre-trained deep 
neural network for audio classification [22] to extract 
latent features. The second set of audio features used in 
this study are 54 dimensions of handcrafted features, 
which include loudness, energy, perceptual spread, per-
ceptual sharpness, spectral flatness, spectral rolloff, spec-
tral flux, spectral slop, spectral variation, spectral shape, 
temporal shape, zero cross rate, and 13 MFCCs. Regard-
ing features extraction, we applied the window size of 
4096 and the step size of 2048. Both YAAFE [23] and 
MIRToolbox [24] are used for the feature extraction. 
Since we extract features from 30 consecutive windows 
in a soundscape excerpt, and we have 54 dimensions of 
features for one window, we end up with having a 54×30 
feature vector for each augmented excerpt.  

4. FRAMEWORKS FOR EMOTION 
RECOGNITION 

In this section, we describe the five frameworks. We train 
and test all the models twice: once for predicting per-
ceived arousal and again for predicting perceived valence. 

4.1 Deep Learning 

4.1.1 Fine-tuning 
This first framework is based on the fine-tuning strategy. 
The concept of fine-tuning is to use a model pre-trained 
on a large dataset, replace its last layers by new layers 

dedicated to the new task, and fine-tune the weights of 
the pre-trained network by continuing the backpropaga-
tion. The main motivation is that the most generic fea-
tures of a deep neural network are contained in the earlier 
layers and should be useful for solving many different 
tasks. However, later layers of a deep neural network 
become more and more specific to the task for which the 
network has been originally trained. 

In this work, we fine-tune the VGG-like audio classifi-
cation model6 (VGGish) trained on a large YouTube da-
taset proposed by Hershey et al. [22]. The authors ex-
ploited ideas from the image classification task and com-
pared several CNN architectures for the audio classifica-
tion task. They introduced the YouTube-100M dataset 
that contains 100 million YouTube videos [22]. Each 
video is labeled with one or more tags. The audio was 
then divided into non-overlapping 960 ms frames. Next, 
the authors computed the log-Mel spectrograms of multi-
ple frames to create 2D image-like patches as the input to 
the CNNs. These experiments show that the “analogs of 
the CNNs do well on the audio classification task, and a 
model using embedding from these classifiers does much 
better than raw features on the AudioSet” [22]. 

To adapt VGGish to our task, the last layer is replaced 
by a fully connected layer composed of 64 neurons. Then 
the output later contains one neuron to produce the pre-
diction score for valence/arousal. The loss associated 
with the output of the model is the mean square error. 
Thus, the model minimizes the sum of squares of differ-
ences between the ground truth and the predicted score 
across training examples. All the layers of the pre-trained 
model are fine-tuned. We trained the fine-tuned models 
using the Adam optimizer with a batch size of 32 exam-
ples, learning rate of 1×10−4, and epsilon of 1×10−8. 

4.1.2 CNN (Trained from Scratch) 

We built and trained a CNN from scratch. We used a grid 
search method to find the number of kernels in each layer, 
kernel size, learning rate and decay. The model is com-
posed of two convolutional layers and one fully connect-
ed layer. The first convolutional layer filters the 
54×30×1 input features with 8 kernels of size 5×5×1 
with a stride of 1. The second convolutional layer, con-
nected to the first one, uses 8 kernels of size 3×3×8. We 
used maxpooling (2×2) for the outputs of both convolu-
tional layers. The dropout rate is 0.15. The fully connect-
ed layer, connected to the second convolutional layer, is 
composed of 256 neurons. The ReLU non-linearity is 
applied to all the convolutional layers and the fully con-
nected layer. The output layer is composed 1 of neuron. 
We use the linear activation for the output layer to obtain 
the predicted score. All the weights are initialized based 
on a Xavier uniform, which draws samples from a uni-
form distribution within a range. The range is determined 
by the number of input units and the number of output 
units. We trained the CNN using the RMSProp optimizer 
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with a batch size of 32 examples, learning rate of 1×10−3 
and decay of 1×10−6. 

4.1.3 LSTM-RNN (Trained from Scratch) 

We built and trained an LSTM network from scratch. We 
used a grid search method to find the number of neurons 
in each layer and parameters, learning rate and decay. 
Our model is composed of two stacked LSTM units. The 
network for predicting arousal has 128 neurons in each 
LSTM unit, while the network for predicting valence has 
64 neurons in each LSTM unit. In both cases, the LSTM 
units use the tanh non-linearity. The output layer is com-
posed of 1 neuron. We use the linear activation for the 
output layer to obtain the predicted score. Similar to CNN, 
all the weights are also initialized based on a Xavier uni-
form. The dimension of the input is 54×30, while 54 is 
the dimension of the feature vector extracted from one 
window and 30 is the number of consecutive windows. 
We trained the LSTM-RNN using the RMSProp optimiz-
er with a batch size of 32 examples, learning rate of 
1×10−3 and decay of 1×10−6. 

4.2 Standard SVR 

This model is similar to the baseline framework presented 
by Fan et al. [3]: two independent SVRs are trained to 
predict arousal and valence scores separately. The SVR is 
fed with the handcrafted features detailed in Section 3. 
All features are normalized using the standard score. We 
used the BOF approach proposed by Aucouturier and 
Defreville [10], which represents signals as the long-term 
statistical distribution of local spectral features. Next, all 
features are normalized between [0, 1.0]. We eliminated 
features whose variance is lower than a threshold (0.02). 
We choose threshold as a heuristic value [3]. We selected 
the Radial Basis Function (RBF) kernel and used a grid 
search method to find the parameters C and gamma. 

4.3 Transfer learning 

Because the VGGish embedding is more semantically 
compact than raw audio features, we used the VGGish 
model as a feature extractor to convert the audio input 
into a semantically meaningful, high-level 128-D embed-
ding that is then fed as input to the SVR outlined in the 
previous section. Regarding SVR, we selected the RBF 
kernel and used a grid search method to find the parame-
ters C and gamma. The VGGish is used to improve the 
performance of the SVR. 

5. PERFORMANCE ANALYSIS 
To learn and evaluate the various frameworks, the aug-
mented dataset composed of 8491 1.393-seconds seg-
ments is shuffled 10 times. Each time, 10% of the dataset 
is randomly selected for testing, and the remaining 90% 
is used for training the model.  

5.1 General Performance 

Table 2 presents the results of using fine-tuned VGGish, 
CNN and LSTM-RNN trained from scratch, transfer 

learning, standard SVR and the combination of transfer 
learning and standard SVR. We use R2 and MSE to eval-
uate the performance of the prediction.  

Table 2 shows that the fine-tuned VGGish outperforms 
the other deep-learning frameworks in terms of predicting 
valence. This is because pre-training VGGish on the 
YouTube-100M dataset captures timbre features in its 
early layers and high-level semantic information in the 
mid layers, which are useful for predicting perceived 
emotion for soundscapes. Table 2 shows that the highest 
R2 of predicting arousal is obtained by the CNN trained 
from scratch.  

An LSTM-RNN can remember things and find patterns 
across time to make predictions. However, in our case, 
the performance of the CNN trained from scratch is better 
than the LSTM-RNN trained from scratch. We think this 
is because LSTM-RNN is much more complex than CNN 
and LSTM-RNN need more data for training. Since the 
CNN trained from scratch sees the entire 54x30 feature 
vector as input, it is able to learn filters that capture tem-
poral patterns directly [25, 26]. 

Regarding standard SVR, the performance for predict-
ing arousal (R2: 0.850) is almost the same as the previous 
study (R2: 0.853) [3]. The performance for predicting 
valence (R2: 0. 656) is slightly better than the result in the 
previous study (R2: 0.622) [3]. Since we provide the same 
handcrafted feature set and we use the same method, the 
improvement is solely caused by data augmentation. 

Although the performance of transfer learning is not as 
good as other frameworks in this study, it still reaches 
those of previous studies regarding valence [12]. Moreo-
ver, we combine the transfer learning and the standard 
SVR by concatenating embedding extracted by VGGish 
and the handcrafted features together. When we use the 
concatenated features as the input for a SVR model, the 
results are significantly better than either that of standard 
SVR or of transfer learning. This result reveals that 
VGGish provides generic mid-level audio representations 
that can be transferred to the task of predicting the per-
ceived valence and arousal. 

 

Framework Arousal Valence 
R2 MSE R2 MSE 

VGGish 
(Fine-tuned) 0.873 0.040 0.759 0.078 

CNN 
(Trained from Scratch) 0.892 0.035 0.712 0.096 

LSTM-RNN 
(Trained from Scratch) 0.873 0.042 0.654 0.115 

SVR  
(Standard) 0.850 0.049 0.656 0.114 

SVR 
(Transfer learning) 0.747 0.083 0.665 0.111 

SVR 
(Standard + Transfer 

learning) 
0.864 0.045 0.717 0.094 

Table 2. Prediction results for valence and arousal di-
mensions (R2: Coefficient of determination, MSE: Mean 
Square Error) 



5.2 Comparisons between Schafer’s Categories 

We investigate the SER for each soundscape category. 
For arousal, we use the best model, CNN trained from 
scratch. Regarding valence, we use the best model, fine-
tuned VGGish. We train the models as we described in 
Section 4. During the test stage, we select the prediction 
results of test samples that belong to each category and 
analyze their performance. It is worth pointing out that 
there are test samples that are mixed soundscape excerpts, 
which we do not categorize as any specific category and 
are not included in this analysis. We only analyze the first 
set, which is composed of 600 excerpts following Schaf-
er's categories as described in Section 3. Table 3 shows 
the R2 of predicting arousal and valence for each category. 
 

Categories Arousal (R2) Valence (R2) 
Mechanical sounds 0.903 0.794 
Natural sounds 0.884 0.843 
Human sounds 0.907 0.808 
Sounds and society 0.865 0.547 
Quiet and silence 0.646 0.810 
Sounds as indicators 0.848 0.900 

Table 3. Results of predicting perceived valence and 
arousal of soundscape recordings that belong to each cat-
egory. 

The previous study indicates that “sounds as indicators 
carries strong semantic information, which plays an im-
portant role in evoking valence to listeners” [27]. It is 
difficult to model valence with only timbre features [28]. 
However, our Fine-tuned VGGish model performs very 
well in predicting valence for “sounds as indicators.” 
Again, we think this is because the model learned high-
level semantic information in the mid layers. When pre-
dicting the valence of “sounds and society,” the R2 is low. 
We find that most annotations of valence for “sounds and 
society” are neutral, and its distribution is close to the 
uniform distribution. Therefore, the values of valence of 
soundscape excerpts belonging to “sounds and society” 
are difficult to differentiate, and it is difficult for machine 
learning models to learn. 

6. CONCLUSIONS 
This work presents the performance of deep-learning 
approaches for soundscape emotion recognition. We have 
found that the fine-tuned CNN framework is a promising 
solution for predicting valence and CNN trained from 
scratch is good at predicting arousal. Intermediate layers, 
originally trained to perform audio classification tasks, 
are generic enough to provide mid-level audio representa-
tions that can greatly improve soundscape emotion 
recognition. However, the limited size of the training set 
(8491 samples) prevents the LSTM-RNN framework 
from obtaining good performances in terms of R2.  

In future work, we plan to further explore the deep 
learning design space, and in particular whether residual 

connections or dense connectivity [29, 30] can improve 
SER. We also plan to investigate whether such architec-
tures can be learned automatically from data [31]. 
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